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Abstract 

A ground-based cloud observation system was developed in the context of the 

DeepSky project that utilizes optical and thermal cameras to capture wide-view images 

of the sky. A large dataset is created consisting of patch sky images in two modalities 

along with corresponding cloud category labels. Convolutional neural network models 

were trained using this dataset to classify the images into the cloud categories. Results 

highlight the complementary nature of the optical and thermal images in the task of 

cloud type classification. 

1 Introduction 

Clouds are collections of water droplets or ice crystals, and they form through the condensation of 

water vapor in the atmosphere, as it rises and cools, attaching to particles like dust, ice or sea salt and 

becoming visible [Liou1992]. Hence, there are various types of clouds according to multiple natural 

factors affecting their formation. The clouds significantly influence Earth's weather patterns, 

impacting the hydrological cycle, energy balance, and climate system. Consequently, accurate cloud 

observation is crucial for weather monitoring and relevant applications (e.g., air traffic control) as 

well as climate assessment or projections. Observation methods include space-based satellites, air-

based radiosondes, and ground-based remote sensing. Satellite observations provide broad coverage, 

but they often lack the necessary temporal and spatial resolutions for localized and short-term cloud 

analysis. Air-based radiosonde observations excel in detecting cloud vertical structures however they 

 
* Masterminded EasyChair and created the first stable version of this document 



are costly. In response, ground-based remote sensing technologies offer cost-effective solutions with 

high-resolution images for detailed analysis of local cloud characteristics [Kazantzidis2012]. 

2 System 

Our ground-based cloud observation system is equipped with two camera sensors, an optical 

camera and a Thermal-InfraRed (TIR) camera. The optical camera, also known as an Red Green Blue 

(RGB) camera, captures images using visible light (390 – 770 nm), similar to how our eyes perceive 

the world. It measures the intensity of red, green, and blue light to create a color image. On the other 

hand, the infrared camera, also referred to as a thermal camera, detects infrared radiation (8 – 14 μm) 

emitted by the atmosphere and clouds. It measures the heat emitted by different objects and converts 

it into an image displaying variations in temperature. The spectral band of 8–14 μm is known as the 

Long Wave InfraRed (LWIR), which is an ideal spectral range for cloud observation. In this spectral 

window, the atmosphere has low emission and high transmittance while clouds emit strong infrared 

radiation. Clouds could be considered as black-bodies since the optically thick clouds’ emission is 

similar to a black-body at or near the temperature of the clouds [Shaw2012].  

Both cameras have their advantages and limitations. The optical camera relies on visible light, 

which means it is influenced by factors like sunlight and atmospheric haze, affecting the pixel values. 

Furthermore, it operates effectively only during daylight hours. Nonetheless, the optical camera can 

capture texture patterns of clouds that are derived from sunlight and cloud thickness. On the other 

hand, the saturation problem of circumsolar region is avoided when images captured from thermal 

cameras. Moreover, thermal representations of clouds may lack detailed texture information, 

especially in cases where large areas of the clouds have similar temperatures. However, these images 

are affected less by the atmospheric aerosols while the most important advantage is the capture of 

images under various air conditions during day and night. 

The use of a TIR microbolometer in thermal cameras necessitates a germanium lens, increasing 

the camera's cost significantly. This cost escalation is due to the necessity of custom-made lenses to 

achieve a wide Field of View (FoV) and high resolution [Klebe2014]. In the work of Wang et al. 

[Wang2021], a self-made dual system, comprising TIR and optical all-sky view cameras, is a 

noteworthy example. While this system provides all sky imagery and high resolution, the number of 

collected images is relatively small covering a few months recordings and thus, its cloud recognition 

approach relies on meteorological models that are regulated by local environmental conditions. Some 

other approaches have employed multiple cameras and scanning operation in different zenith 

directions [Sun2011] or utilized spherical aluminum mirrors to reflect the sky [Aebi2018] however, 

these methods introduce many challenging installation issues, such as the need for motoring 

mechanism, combining multiple captured images into a unified image, cleaning the mirror, and 

determining the appropriate distance between camera and mirror.  

The DeepSky dual camera system we employed consists of an optical and a thermal sensor, both 

offering a wide-angle FoV and capturing registered images with a small scaling factor between them. 

This system is based on the Mobotix M73 cameras configuration. More specifically, the optical 

camera is equipped with an IR cut filter, enabling its use in small luminance conditions. The thermal 

sensor operates in the infrared range of 7.5 to 13.5 μm and exhibits a Noise-Equivalent Temperature 

Difference (NETD) sensitivity of 50 mK. This thermal camera is enhanced with integrated Thermal 

Radiometry technology and a high-end thermal image sensor that is calibrated to measure thermal 

radiation across the entire image area and assign a temperature value per pixel. A summary of the key 

specifications of this dual camera system is presented in the following Table 1. Furthermore, our 

novel recognition system, designed for image processing, is firmly rooted in the principles of deep 

learning, leveraging a vast number of annotated images from both modalities for robust performance. 



 

3 Dataset 

The DeepSky system captures Sky Patch Images (SPI) using wide-angle lenses for both the optical 

and thermal cameras. As a result, the images cover the central portion of the sky rather than entire 

sky, as our dual camera system is positioned to look directly overhead (zenith). This is in contrast to 

Total Sky Images (TSI), which use a hemispherical chrome-plated mirror to reflect the sky onto a 

downward-pointing camera located above the mirror, and All Sky Images (ASI) which are typically 

obtained using a camera equipped with a fish-eye lens [Nie2022]. The images captured by the 

DeepSky system, located at the Physics Department of the University of Patras (38° 17' 29" N, 21° 47' 

20" E), and covers the period between 2022 and 2023. The images are labeled with one of the five 

cloud categories: cumulus, altocumulus, cirrus, clear sky, and stratocumulus-cumulonimbus, based on 

the classification recommended by the World Meteorological Organization (WMO). The 

classification of the images was performed by professional human observers from the Laboratory of 

Atmospheric Physics. Since both optical and thermal images are captured simultaneously, the cloud 

labels are associated with both image types. Therefore, images for daytime data of thermal camera are 

used because only daytime images are available for the visible camera and human annotation. To 

ensure balanced training data, an equal number of images was selected from 2022 for training. This 

was achieved by randomly choosing images according to the number of the smallest class, ensuring 

that each class had the same number of training samples. For the test set, all available images from 

2023 were used. However, since the clear sky class was overrepresented, a subset of randomly 

selected clear sky images was reduced in order to maintain a more balanced distribution across all 

classes. Table 2 provides a description of each cloud category along with the number of images 

Specs of Dual camera system Optical 

Camera 

Thermal 

Camera 

Resolution (H × V in pixels) 640 × 480 640 × 480 

Field of View (FoV) (H × V in degrees) 95o × 50o 90o × 69o 

Focal Length 5mm 5mm 

Aperture  f/1.8” - 

Operational Temperature  -40o to 60o C 

Protection IP66, IK07 
Table 1: Key specifications of DeepSky dual camera system 

 

Cloud types - 

Classes 

Description Training 

(during 

2022) 

Test 

(during 

2023) 

I)     Cumulus Low clouds, Fluffy and puffy clouds with a 

distinct dome-shaped appearance 

278 82 

II)    Altocumulus Middle clouds, Patched clouds with mosaic-like 

appearance 

259 87 

III)  Cirrus High clouds, Thin, wispy, and fibrous clouds with 

a feathery or filamentous appearance 

275 70 

IV)  Clear sky Cloudless sky or a very few cloudiness 286 426 

V) Stratocumulus-       

     Cumulonimbus 

Low clouds,  

Thick and lumpy clouds with almost to mostly 

overcast  

223 93 

Total  1321 758 
Table 2: Information about the DeepSky dual representation dataset 

 



available for each category. It's important to note that the total number of images in the dataset is 

doubled due to the inclusion of both optical and thermal images. This dataset consists of SPI with two 

modalities, optical and thermal, and includes the corresponding cloud category labels. Figure 1 shows 

some examples of the images in the dataset. 

 

4 Results 

We employed a Convolutional Neural Network (CNN), specifically the ResNet-50 [He2016], to 

analyze the classification performance. Two separate CNN models were trained and evaluated using 

the optical and thermal images respectively. The images were resized to 224 x 224 pixels to reduce 

the computational cost. Also, the images are augmented by random horizontal and vertical flips 

during training. To ensure a coherent temperature range, the thermal images underwent pre-

processing to limit temperature range between -80 and 25 degrees Celsius, where values exceeding 25 

degrees were set to 25. This pre-processing step was necessary to eliminate temperature values that 

could be influenced by external factors such as a portion of sunlight or objects, like airplanes, 

Figure 1: Examples of image pairs from the dual dataset with two modalities: optical (RGB 

images) and thermal (images with color scaling using a grayscale colormap). We display ten image 

pairs representing five cloud categories, with the RGB image on the left and the corresponding 

thermal image on the right.  

 



ensuring a more reliable and accurate analysis of the thermal data. The histograms of temperature 

values for the various cloud categories, generated using the training thermal images, provide a clear 

justification of this process, as shown in Figure 2. All images were normalized using mean subtraction 

and standard deviation division, calculated from the training data, before their input to CNN models.  

Optimization was performed by minimizing the cross-entropy classification loss with the 

RMSprop optimizer, employing a mini-batch size of 16 and an initial learning rate of 10-5 for 50 

epochs. The classification results are presented using the confusion matrices in Figure 3 for the optical 

and thermal settings respectively. Although both CNN models achieved an average per-class 

classification accuracy of 76%, it is evident that optical and thermal representations have a different 

impact on the results. Specifically, the models performed similarly on cloudless sky (clear sky), 

middle clouds (altocumulus), and high clouds (cirrus). However, the classification accuracy for low 

clouds (cumulus and stratocumulus-cumulonimbus) differed between the two modalities. The model 

operating on optical images exhibited good performance in distinguishing cumulus clouds while the 

model operating on thermal images showed good performance in distinguishing stratocumulus-

cumulonimbus clouds. This can be attributed to the information captured by each representation. The 

first model captured the texture and distinct features associated with cumulus clouds, such as clearly 

defined edges and white or light-gray color, whereas the second model detected the smaller 

temperature range (-30°C to 10°C) specific to stratocumulus-cumulonimbus clouds contrasting with 

the larger temperature range (-60°C to 10°C) observed in cumulus clouds.  

5 Conclusions 

In conclusion, a ground-based cloud observation system is developed incorporating optical and 

thermal cameras, enabling the capture of wide-view images of the sky. By utilizing this system, a 

substantial dataset comprising patch sky images in two modalities, along with associated cloud 

category labels, was created. Through the training of CNN models using this dataset, it was observed 

that the optical and thermal images complement each other in the classification of cloud types. This 

finding underscores the significance of utilizing multiple modalities for accurate and comprehensive 

cloud type classification. The integration of optical and thermal data enhances the overall 

understanding of cloud formations and contributes to advancements in cloud observation and analysis. 

Future plans include the fusion of both modalities into the training of a CNN as well as the extension 

of the dataset using a motor mechanism that moves the cameras into some predefined positions to 

capture complete view of the entire sky. 

 
 

Figure 2: Histogram of temperature values in the thermal images for the five different cloud types presented in the 

training set of the dataset. 
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Figure 3: Confusion matrices using the Optical images (Left) and the Thermal images (Right).  


